66 research outputs found

    From Blood Oxygenation Level Dependent (BOLD) signals to brain temperature maps

    Get PDF
    A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO2) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model we obtain a transcendental equation relating CBF and CMRO2 changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bio-heat equation describing the rate of temperature changes in the brain, we obtain a non autonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. In order to test the method, temperature maps obtained from a real BOLD dataset are calculated showing temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The method could find potential clinical uses as it is an improvement over conventional methods which require invasive probes and can record only few locations simultaneously. Interestingly, the statistical analysis revealed that significant temperature variations are more localized than BOLD activations. This seems to exclude the use of temperature maps for mapping neuronal activity as areas where it is well known that electrical activity occurs (such as V5 bilaterally) are not activated in the obtained maps. But it also opens questions about the nature of the information processing and the underlying vascular network in visual areas that give rise to this result

    Topological Properties of Resting-State fMRI Functional Networks Improve Machine Learning-Based Autism Classification

    Get PDF
    Automatic algorithms for disease diagnosis are being thoroughly researched for use in clinical settings. They usually rely on pre-identified biomarkers to highlight the existence of certain problems. However, finding such biomarkers for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD) has challenged researchers for many years. With enough data and computational power, machine learning (ML) algorithms can be used to interpret the data and extract the best biomarkers from thousands of candidates. In this study, we used the fMRI data of 816 individuals enrolled in the Autism Brain Imaging Data Exchange (ABIDE) to introduce a new biomarker extraction pipeline for ASD that relies on the use of graph theoretical metrics of fMRI-based functional connectivity to inform a support vector machine (SVM). Furthermore, we split the dataset into 5 age groups to account for the effect of aging on functional connectivity. Our methodology achieved better results than most state-of-the-art investigations on this dataset with the best model for the >30 years age group achieving an accuracy, sensitivity, and specificity of 95, 97, and 95%, respectively. Our results suggest that measures of centrality provide the highest contribution to the classification power of the models

    Solving large-scale MEG/EEG source localisation and functional connectivity problems simultaneously using state-space models

    Get PDF
    State-space models are widely employed across various research disciplines to study unobserved dynamics. Conventional estimation techniques, such as Kalman filtering and expectation maximisation, offer valuable insights but incur high computational costs in large-scale analyses. Sparse inverse covariance estimators can mitigate these costs, but at the expense of a trade-off between enforced sparsity and increased estimation bias, necessitating careful assessment in low signal-to-noise ratio (SNR) situations. To address these challenges, we propose a three-fold solution: (1) Introducing multiple penalised state-space (MPSS) models that leverage data-driven regularisation; (2) Developing novel algorithms derived from backpropagation, gradient descent, and alternating least squares to solve MPSS models; (3) Presenting a K-fold cross-validation extension for evaluating regularisation parameters. We validate this MPSS regularisation framework through lower and more complex simulations under varying SNR conditions, including a large-scale synthetic magneto- and electro-encephalography (MEG/EEG) data analysis. In addition, we apply MPSS models to concurrently solve brain source localisation and functional connectivity problems for real event-related MEG/EEG data, encompassing thousands of sources on the cortical surface. The proposed methodology overcomes the limitations of existing approaches, such as constraints to small-scale and region-of-interest analyses. Thus, it may enable a more accurate and detailed exploration of cognitive brain functions

    Glotopolítica latinoamericana : Tendencias y perspectivas

    Get PDF
    Glotopolítica latinoamericana: tendencias y perspectivas recoge el resultado de presentaciones y deliberaciones del IV Congreso Latinoamericano de Glotopolítica, realizado en la Universidad de San Pablo (Brasil) en septiembre de 2019, que convocó a numerosos y destacados especialistas en el área. Su inscripción en una serie (los anteriores se realizaron en Chile, Colombia y Alemania) nos permite apreciar los grandes ejes de los que da cuenta el cuidadoso e inteligente armado del libro decidido por los editores, y fundamentado en la Presentación. El tramo que hemos recorrido como especialistas, en el cual los eventos internacionales son hitos significativos, ha ido mostrando la amplitud de un campo que se construye apelando a tradiciones académicas variadas, que insiste en su carácter interdisciplinario y crítico y que no deja de tener una dimensión militante que se expone en las reflexiones teóricas, las investigaciones empíricas y las prácticas institucionales

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Modeling the Generation of Phase-Amplitude Coupling in Cortical Circuits: From Detailed Networks to Neural Mass Models

    No full text
    Phase-amplitude coupling (PAC), the phenomenon where the amplitude of a high frequency oscillation is modulated by the phase of a lower frequency oscillation, is attracting an increasing interest in the neuroscience community due to its potential relevance for understanding healthy and pathological information processing in the brain. PAC is a diverse phenomenon, having been experimentally detected in at least ten combinations of rhythms: delta-theta, delta-alpha, delta-beta, delta-gamma, theta-alpha, theta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma. However, a complete understanding of the biophysical mechanisms generating this diversity is lacking. Here we review computational models of PAC generation that range from detailed models of neuronal networks, where each cell is described by Hodgkin-Huxley-type equations, to neural mass models (NMMs) where only the average activities of neuronal populations are considered. We argue that NMMs are an appropriate mathematical framework (due to the small number of parameters and variables involved and the richness of the dynamics they can generate) to study the PAC phenomenon

    Modeling the Generation of Phase-Amplitude Coupling in Cortical Circuits: From Detailed Networks to Neural Mass Models

    No full text
    Phase-amplitude coupling (PAC), the phenomenon where the amplitude of a high frequency oscillation is modulated by the phase of a lower frequency oscillation, is attracting an increasing interest in the neuroscience community due to its potential relevance for understanding healthy and pathological information processing in the brain. PAC is a diverse phenomenon, having been experimentally detected in at least ten combinations of rhythms: delta-theta, delta-alpha, delta-beta, delta-gamma, theta-alpha, theta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma. However, a complete understanding of the biophysical mechanisms generating this diversity is lacking. Here we review computational models of PAC generation that range from detailed models of neuronal networks, where each cell is described by Hodgkin-Huxley-type equations, to neural mass models (NMMs) where only the average activities of neuronal populations are considered. We argue that NMMs are an appropriate mathematical framework (due to the small number of parameters and variables involved and the richness of the dynamics they can generate) to study the PAC phenomenon.Peer Reviewe

    Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column

    No full text
    <div><p>Phase-amplitude coupling (PAC), a type of cross-frequency coupling (CFC) where the phase of a low-frequency rhythm modulates the amplitude of a higher frequency, is becoming an important indicator of information transmission in the brain. However, the neurobiological mechanisms underlying its generation remain undetermined. A realistic, yet tractable computational model of the phenomenon is thus needed. Here we analyze a neural mass model of a cortical column, comprising fourteen neuronal populations distributed across four layers (L2/3, L4, L5 and L6). A control analysis showed that the conditional transfer entropy (cTE) measure is able to correctly estimate the flow of information between neuronal populations. Then, we computed cTE from the phases to the amplitudes of the oscillations generated in the cortical column. This approach provides information regarding directionality by distinguishing PAC from APC (amplitude-phase coupling), i.e. the information transfer from amplitudes to phases, and can be used to estimate other types of CFC such as amplitude-amplitude coupling (AAC) and phase-phase coupling (PPC). While experiments often only focus on one or two PAC combinations (e.g., theta-gamma or alpha-gamma), we found that a cortical column can simultaneously generate almost all possible PAC combinations, depending on connectivity parameters, time constants, and external inputs. PAC interactions with and without an anatomical equivalent (direct and indirect interactions, respectively) were analyzed. We found that the strength of PAC between two populations was strongly correlated with the strength of the effective connections between the populations and, on average, did not depend on whether the PAC connection was direct or indirect. When considering a cortical column circuit as a complex network, we found that neuronal populations making indirect PAC connections had, on average, higher local clustering coefficient, efficiency, and betweenness centrality than populations making direct connections and populations not involved in PAC connections. This suggests that their interactions were more effective when transmitting information. Since approximately 60% of the obtained interactions represented indirect connections, our results highlight the importance of the topology of cortical circuits for the generation of the PAC phenomenon. Finally, our results demonstrated that indirect PAC interactions can be explained by a cascade of direct CFC and same-frequency band interactions, suggesting that PAC analysis of experimental data should be accompanied by the estimation of other types of frequency interactions for an integrative understanding of the phenomenon.</p></div

    Laminar distribution of average LFP.

    No full text
    <p>A) Temporal dynamics in layers 2/3 (L2/3), 4(L4), 5(L5) and 6(L6). B) Spectral density (SD). </p
    corecore